Table of Contents
Basics
import numpy as np
Creating Arrays
arr = np.array([1, 2, 3, 4, 5]) # Create a 1D array
matrix = np.array([[1, 2, 3], [4, 5, 6]]) # Create a 2D array
Array Attributes
arr.shape # Shape of the array
len(arr) # Length of the array
arr.ndim # Number of array dimensions
arr.size # Number of elements in the array
arr.dtype # Data type of the array
Array Operations
arr2 = np.array([6, 7, 8, 9, 10])
arr + arr2 # addition
arr - arr2 # subtraction
arr * arr2 # multiplication
arr / arr2 # division
np.dot(arr, arr2) # Dot product
Array Indexing and Slicing
arr[0] # Access an element
arr[2:5] # Slice elements from index 2 to 4 (exclusive)
matrix[0, 2] # Access a specific element in a matrix
matrix[:, 1] # Access all elements in the second column
arr[arr > 3] # Filter elements based on a condition
Array Reshaping and Resizing
arr.reshape((3, 2)) # Reshape the array
np.resize(arr, (3, 2)) # Resize the array (repeating or truncating values)
Array Functions
np.zeros((2, 3)) # Create an array filled with zeros
np.ones((2, 3)) # Create an array filled with ones
np.arange(0, 10, 2) # Create an array with a range of values
np.linspace(0, 1, 5) # Create an array with evenly spaced values
np.random.rand(3, 2) # Create an array with random values
np.max(arr) # Find the maximum value in the array
np.min(arr) # Find the minimum value in the array
np.sum(arr) # Calculate the sum of all elements
np.mean(arr) # Calculate the mean of all elements
np.median(arr) # Calculate the median of all elements
np.std(arr) # Calculate the standard deviation
np.sort(arr) # Sort the array in ascending order
np.argsort(arr) # Get the indices that would sort the array